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Abstract: Quantitative structure–activity relationship (QSAR) study, important in drug design, mainly involves two aspects,
molecular structural characterization (MSC) and construction of a statistical model. MSC focuses on transforming molecular
structural and property characteristics into a group of numerical codes, dedicated to minimizing information loss during this
process. In this context, common atoms in organic compounds are classified according to their families in the periodic table, and
hybridization states, and on the basis of these, three nonbonding interactions (i.e. electrostatic, van der Waals and hydrophobic)
are calculated, ultimately resulting in a new rotation–translation invariant, 3D-MSC, as a three-dimensional holograph vector of
atomic interaction field (3D-HoVAIF). By applying 3D-HoVAIF to QSAR studies on two classical peptides including 58 angiotensin-
converting enzyme (ACE) inhibitors and 48 bitter-tasting dipeptides, we get two excellent genetic algorithm-partial least squares
(GA-PLS) models, with statistics r2, q2, root mean square error (RMSEE), and root mean square error of cross-validation (RMSCV)
of 0.857, 0.811, 0.376, and 0.432 for ACE inhibitors and 0.940, 0.892, 0.153 and 0.205 for bitter-tasting dipeptides, respectively.
By equally dividing the two datasets into training and test sets by D-optimal, the 3D-HoVAIF approach undergoes rigorous
statistical validation. Furthermore, the superior performance of 3D-HoVAIF is confirmed in comparison with two other peptide
MSC approaches referring to z-scale and ISA-ECI. For 58 ACE inhibitors, the GA-PLS model yields two principal components,
with the following statistics: r2 = 0.893, q2 = 0.824, RMSEE = 0.349, RMSCV = 0.425, q2

ext = 0.739, r2
ext = 0.784, r2

0,ext = 0.781,
r

′2
0,ext = 0.779, k = 0.962, k ′ = 1.019, and RMSEP = 0.460; for 48 bitter-tasting dipeptides, three principal components resulted,

with the statistics as: r2 = 0.950, q2 = 0.893, RMSEE = 0.152, RMSCV = 0.222, q2
ext = 0.875, r2

ext = 0.919, r2
0,ext = 0.919,

r
′2
0,ext = 0.919, k = 1.018, k ′ = 0.974, and RMSEP = 0.198. In addition, the relationship of ACE-inhibiting activities with bitter-

tasting thresholds has been investigated by applying the above-constructed models to predictions on 400 theoretically possible
dipeptides. Through analysis, the ACE-inhibiting activities are found to be prominently related to bitter-tasting intensities. Thus,
it is deemed to be difficult to find such dipeptides that simultaneously satisfy pharmacodynamic action (high ACE-inhibiting
activities) and comfortable tastes, suggesting that active components of dipeptides that are served as functional food to lower
blood pressure are not very ideal. Copyright  2007 European Peptide Society and John Wiley & Sons, Ltd.
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INTRODUCTION

It is understood that since molecules are the funda-
mental constituents of substances, the physicochemi-
cal properties of substances are mostly interpreted in
terms of the constituent molecules. Once the molec-
ular structures are known, the properties can be
concomitantly determined. Molecular structural char-
acterization (MSC), indispensable to drug design and
pharmacodynamic action evaluation, is the first key
involved in quantitative structure–activity relationship
(QSAR) studies. With the main idea of transforming
structure and properties of organic molecules into

* Correspondence to: Zhiliang Li, College of Chemistry and Chemical
Engineering, Chongqing University, Chongqing 40044, China;
e-mail: ggootc@163.com

a group of characteristic codes, MSC commits itself
to minimizing information loss during this process.
Current MSC techniques mainly include two types:
one is based on the two-dimensional (2D) molecu-
lar skeleton and the other on three-dimensions (3D)
[1]. For the 2D descriptors, since the first topological
approach was proposed by Wiener [2] in 1947, there
have been many other singly parameterized methods
based on molecular topological structures (e.g. Hosoya
index [3], Randic index [4], Balaban index [5], etc.),
achieving predictable performance on organic homol-
ogous physicochemical properties [6,7]. Consequently,
the past few years have witnessed important devel-
opments of 2D descriptors, confirmed by the E-State
index [8–9] proposed by Kier and coworkers and a
series of molecular fingerprint descriptors developed by
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Wild et al. [10–14]. However, 2D structural descrip-
tors are essentially unable to construct valid QSAR
model on drug and bio-macromolecules because they
are incapable of reproducing the true spatial conforma-
tions of molecules and also overlook ligand–receptor
active sites. Because of this, 3D approaches are given
much importance currently in the MSC field. Com-
parative molecular field analysis (CoMFA) proposed by
Cramer et al. [15] in the 1980s and a number of similar
methods based on molecular spatial structures (e.g.
CoMSIA [16], HASL [17], GRID [18] and COMPASS
[19]) have become the mainstay of current QSAR stud-
ies. But these methods are all confronted with some
insurmountable issues, exemplified by conformation
alignment prior to performing structure–activities stud-
ies, division of spatial grids, control of the number of
variables, selection of reasonable probes, etc. In view of
that, the weighted holistic invariant molecular (WHIM)
method [20–22] proposed by Todeschini’s team is com-
pletely different from CoMFA methods, and resolves
molecular-field energies by classical probes, behaving
as a group of rotation–translation invariants derived
from a weighted transformation of different physical
variables against the steric coordinates of atoms. Since
then, several other QSAR methods including COMMA
[23], EVA [24], DiP [25], etc. have also been developed,
which are independent of conformation alignments, but
these methods suffer from the demerits of low resolution
of molecular structural information, implicit physico-
chemical meanings and complicated calculations.

In early works, the molecular distance-edge (MDE)
vector [26] was proposed based on of molecular
2D structures and interatomic Pauling’s electroneg-
ativity interactions; in subsequent researches, MDE
evolved into a series of similar descriptors (e.g. MEDV
[27], VAED [28], ADEV [29], etc.). However, these
MDE-derived methods all pertain to electro-topologies
because they involve only molecular 2D topological
structures and simple atomic charges. Inspired by
MDE and the ideas of rotation–translation invariants
in WHIM and molecular potential field functions in
CoMFA, we propose a new 3D MSC method, three-
dimensional holograph vector of atomic interaction
field (3D-HoVAIF). Considering two spatial invariants
(with regard to the relative atomic distance and inher-
ited atomic properties) of the molecule, 3D-HoVAIF
descriptors result from calculations of three nonbond-
ing interactions directly relating to bioactivities, involv-
ing neither an experimental parameter nor conforma-
tion alignment. In contrast with traditional 3D-MSC
methods, 3D-HoVAIF is differerent: (i) distributions of
nonbonding potential fields around drug molecules are
indirectly reflected in calculations of the interatomic
interactions; (ii) modeling interpretabilities and resolu-
tion power on molecular structures are augmented by
classifying atoms in terms of their chemical properties;
(iii) such descriptors are easy to calculate, avoiding the

disadvantages of conformation alignment, grid alloca-
tion and probe settings in CoMFA. By applying 3D-
HoVAIF to QSAR studies on two classical data sets, 58
angiotensin-converting enzyme (ACE) inhibitors, and 48
bitter-tasting dipeptides, 3D-HoVAIF descriptors were
confirmed to be competent to extract information on
molecular nonbonding potential fields and to relate with
bioactivities.

PRINCIPLE AND METHODOLOGY

Three-dimensional Holograph Vector of Atomic
Interaction Field

Common atoms in organic molecules, including H,
C, N, P, O, S, F, Cl, Br, and I, are mainly located
in five groups of the periodic table (i.e. group IA,
IVA, VA, VIA, and VIIA). Enlightened by the idea
that ‘atoms of similar chemical properties pertain to
the same species’, the atoms under consideration
are naturally grouped into five classes according
to their families in the periodic table. In further
consideration of the molecular fine structures, the
above five atomic types are subsequently subdivided
into 10 classes in terms of their hybridization state,
which is deemed to be the key to present distinct
chemical properties; thereby, a molecule ultimately
corresponds to 55 atomic interaction items (Table 1).
Here, what should be elucidated is how one can make
further classifications (i.e. a classification beyond the
above-mentioned 55 items) according to practical 3D-
HoVAIF applications. Therefore, considering the three
common potential energies, electrostatic, van der Waals
and hydrophobic interactions, which directly relate with
bioactivities, the 55 interaction items are multiplied
by 3, resulting in 3 × 55 = 165 interaction items to
represent a molecule. Although not indicating the direct
ligand–receptor interaction mode, the 3D-HoVAIF
descriptors mostly contain abundant information about
molecular potential energy distributions, even under
conditions of unknown receptor structures.

Electrostatic interaction: As an important non-
bonded interaction, it obeys Coulomb’s law. In Eqn (1),
rij denotes the interatomic Euclidean distance, with
m serving as its unit; e is the elementary charge
(1.6021892 × 10−19C); ε0 (8.85418782 × 10−12C2/J · m)

represents the dielectric constant in vacuum; q is the
number of Mülliken partial charges for the atoms; m
and n are the atomic types.

Emn(E) =
∑

i∈m,j∈n

e2

4πε0
· qi · qj

rij
(1 ≤ m ≤ 10,m ≤ n ≤ 10)

(1)

Van der Waals interaction: Behaving as inter-
atomic spatial nondipole–dipole or dipole-induced
interactions, it is here expressed by the Lennard–Jones
Eqn (2). Here εij = (εii · εjj)

1/2 is the potential well of
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Table 1 The ten atomic types and 55 interactions in 3D-HoVAIF

No. Atomic type 1 2 3 4 5 6 7 8 9 10

1 H 1–1 1–2 1–3 1–4 1–5 1–6 1–7 1–8 1–9 1–10
2 C(sp3) 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10
3 C(sp2) 3–3 3–4 3–5 3–6 3–7 3–8 3–9 3–10
4 C(sp) 4–4 4–5 4–6 4–7 4–8 4–9 4–10
5 N(sp3), P(sp3) 5–5 5–6 5–7 5–8 5–9 5–10
6 N(sp2), P(sp2) 6–6 6–7 6–8 6–9 6–10
7 N(sp), P(sp) 7–7 7–8 7–9 7–10
8 O(sp3), S(sp3) 8–8 8–9 8–10
9 O(sp2), S(sp2) 9–9 9–10

10 F, Cl, Br, I 10–10

the atom pairs, with its value taken from Ref. 30;
Rij

∗ = (Ch · Rii
∗ + Ch · Rjj

∗)/2 indicates the van der Waals
radius for modified atom pairs, with the correction fac-
tor Ch = 1.00 in case of sp3 hybridization, 0.95 for sp2

hybridization and 0.90 for sp hybridization [31].

Emn(V ) =
∑

i∈m,j∈n

εij ×
[(

R∗
ij

rij

)12

− 2 ·
(

R∗
ij

rij

)6
]

(1 ≤ m ≤ 10,m ≤ n ≤ 10) (2)

Hydrophobic interaction: It is very important
for drug molecules to bind to organisms. Indicating
information on the systemic entropy changes, such
an interaction does not have a unique expression. In
3D-HoVAIF, hydrophobic interaction is indicated by
Eqn (3), which is defined in the method proposed by
Kellogg et al. [32]. In that, S is the atomic solvent
accessible surface area (SASA) [33], indicating the
surface area formed by a water-molecule probe with
its center on an atom surface in a circle; a is
atomic hydrophobic constant, with the value taken
from Ref. 34; T is the discriminant function, denoting
entropy changing orientation in the case of different
interatomic interactions.

Emn(H) =
∑

i∈m,j∈n

Si · ai · Sj · aj · e−rij · Tij

(1 ≤ m ≤ 10,m ≤ n ≤ 10) (3)

Partial Least Square Regression

Partial least square (PLS) regression, proposed by Wold
et al. [35] in the 1980s to overcome multicollinearity
during the modeling process, is widely used and espe-
cially suitable for the case in which the sample number
is below the variable number. As in the following, the
independent variable matrix X is subjected to a bilinear
decomposition:

X = TP′ + F (4)

In the above, matrix T is composed of mutually
orthogonal latent variables or the scoring vector t which
derives from a linear combination of variables in the
matrix X. Unlike PCA, PLS simultaneously implements
bilinear decomposition on the target matrix Y:

Y = UQ′ + E (5)

Of these, the matrix U comprises the latent variable
u in Y. On the basis of that, the latent variable t,
obtained by decomposing X, maximally overlaps with
the latent variable u derived from the decomposition of
Y. Therefore:

u = vt + e (6)

In Eqn (6), e is the error vector and coefficient v is
determined by the method of least-squares. Computa-
tional and other details are given in Refs. 36,37.

The optimal PLS principal component number is
determined upon leave-one-out cross-validation.

Statistical Parameters

In common practice, the leave-one-out cross-validation
correlation coefficient q2 and root mean square error of
cross-validation (RMSCV) are jointly used to evaluate
modeling predictabilities, with separate expressions as
in Eqns (7) and (8):

q2 = 1 − PRESS
SSQ

(7)

RMSCV =
√

PRESS
n

(8)

In the above, PRESS is the error sum of predicted
squares between Yobsd (indicating the observed sample
values) and leave-one-out cross-validation Ypred; SSQ
denotes residual sum of squares of Yobsd:

PRESS =
n∑

i=1

(Y i
obsd − Y i

pred)
2 (9)

SSQ =
n∑

i=1

(Y i
obsd − Y obsd)

2 (10)
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The non-cross-validated models are estimated by
standard PLS parameters – explained variance r2 and
root mean square error (RMSEE) which are given by the
formulas:

r2 = 1 −

n∑
i=1

(Y i
obsd − Y i

est)
2

n∑
i=1

(Y i
obsd − Y obsd)

2

(11)

RMSEE =
√√√√1

n

n∑
i=1

(Y i
obsd − Y i

est)
2 (12)

It has been recently pointed out that only q2

underdetermines the predictabilities of a QSAR model,
and therefore, an external validation is required
[38–40]. The common criteria to confirm modeling
predictabilities is as follows [41,42]:

RMSEP =
√√√√ 1

next

next∑
i=1

(Y i
obsd − Y i

ext)
2 (13)

q2
ext = 1 −

next∑
i−1

(Y i
obsd − Y i

pred)
2

next∑
i−1

(Y i
obsd − Y tra)

2

(14)

r2
ext − r2

0,ext

r2
ext

< 0.1 or
r2
ext − r

′2
0,ext

r2
ext

< 0.1 (15)

0.85 ≤ k ≤ 1.15 or 0.85 ≤ k ′ ≤ 1.15 (16)

where, RMSEP is the root mean square error of
predictions on the test set; qext

2 (external q2) is external
correlation coefficient indicating predictabilities on the
test set by the model. Also, Y i

obsd denotes the observed
bioactivities on test set while Y i

pred is the predicted
value by the model for test samples. Y i

tra represents the
average observed bioactivities over training samples;
r2

ext indicates the correlation coefficient of the observed-
to-predicted regression for the test set, r2

0,ext and r
′2
0,ext

are the correlation coefficients of the regression passing
through the origin for the test set (predicted versus
observed activities r2

0,ext, and observed versus predicted
activities r

′2
0,ext), with k and k ′ corresponding to separate

slopes.

PREPARING WORK

Dataset

Angiotensin-converting enzyme (ACE) inhibitors.
The rennin–angiotensin system plays an important
role in regulating blood pressure in human bodies.
Angiotensinogen, produced by liver, is catalyzed by
rennin to disrupt the inactive angiotensin I, which is

further catalyzed by the ACE to rupture into angiotensin
II, an agent highly responsible for blood vessel con-
tractions. In view of that, ACE becomes the biotarget
of many important antihypertensive drugs [43]. By
simulating structural characteristics of active sites
in angiotensin I (an ACE substrate), ACE inhibitors
competitively bind to ACE, thereby inhibiting effective
ACE bioactivities. Fifty-eight ACE inhibitors, originally
reported by Cushman et al. [44], have been extensively
used as a classical QSAR sample set [45–56] to val-
idate newly proposed MSC methods. Structures and
activities for such a dataset are taken from Ref. 47,
with activities expressed in the form of pIC50, listed in
Table 2.

Bitter-tasting dipeptides. Taste is very important to
humans and other organisms, often classified into
four typical types, as sweet, bitter, salty, and acid.
Of that, the bitter perception protects human and
many other higher animals from injury by toxic
substances. In gustatory receptor cell, conduction of the
gustatory signal includes a series of intricate processes
mediated by the G-protein coupled receptor [57,58].
Bitter-tasting thresholds of 48 dipeptides are reported
by Asao et al. [59]; their activities are expressed
as the negative logarithm of bitter-tasting threshold
concentrations (pT) (Table 3). This dataset also has
wide applications in testing newly proposed descriptors
[45,47–49,51,53,60,61].

Structural Optimizations

Captopril, as the first ACE inhibitor of peptide analogs,
was developed by Cushman and Ondetti in 1977 [62].
Figure 1 presents crystal structure of captopril–ACE
complex which was measured by Natesh et al. [63]
using X-ray diffraction at 2 Å resolution (PDB ID: 1UZF),
which shows that at the core of enzyme active site, there
is a monomolecular captopril. Figure 2 reveals the spa-
tial structure of captopril separated from the complex,

Figure 1 Three-dimensional crystal structures of capto-
pril–ACE complex measured by X-ray diffraction.

Copyright  2007 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2007; 13: 549–566
DOI: 10.1002/psc



APPLYING 3D-HOVAIF TO MODELING OF PEPTIDES 553

Table 2 Sequences of 58 ACE Inhibitors and their Observed and Calculated Activities (pIC50)

No. Peptidea n Cald1c Cald2d Cald3e No. Peptidea Obsdb Cald1c Cald2d Cald3e

1 VW 5.80 5.65 5.67 5.39 30 KG∗ 2.49 2.81 2.58 2.26
2 IW 5.70 5.44 5.53 5.74 31 FG∗ 2.43 3.01 2.59 3.19
3 IY∗ 5.43 4.62 4.93 4.93 32 GS 2.42 2.13 1.95 1.83
4 AW∗ 5.00 4.52 4.78 5.59 33 GV 2.34 2.84 2.89 2.98
5 RW 4.80 4.47 4.51 4.51 34 MG 2.32 2.54 2.53 2.40
6 VY∗ 4.66 4.37 4.63 4.65 35 GK 2.27 2.94 2.72 2.34
7 GW 4.52 4.16 4.34 4.36 36 GE 2.27 2.03 1.90 1.90
8 VF 4.28 4.06 3.80 4.05 37 GT∗ 2.24 2.23 2.39 1.82
9 AY∗ 4.06 3.78 4.11 4.13 38 WG 2.23 3.69 3.42 3.16
10 IP∗ 3.89 3.92 3.77 3.22 39 HG∗ 2.20 2.20 2.06 1.79
11 RP∗ 3.74 3.27 3.42 3.19 40 GQ∗ 2.15 1.81 2.32 2.06
12 AF∗ 3.72 3.49 3.34 3.76 41 GG∗ 2.14 1.87 1.84 2.17
13 GY 3.68 3.43 3.65 3.37 42 QG∗ 2.13 1.76 2.28 2.02
14 AP∗ 3.64 3.07 3.22 2.90 43 SG∗ 2.07 1.81 1.91 1.69
15 RF 3.64 3.69 3.56 3.78 44 LG∗ 2.06 3.00 2.66 2.59
16 VP∗ 3.38 3.65 3.66 2.79 45 GD 2.04 2.01 2.07 2.15
17 GP∗ 3.35 2.74 2.45 2.81 46 TG∗ 2.00 2.09 2.31 1.94
18 GF∗ 3.20 3.15 2.88 3.45 47 EG 2.00 1.91 1.81 1.83
19 IF∗ 3.03 4.35 3.92 3.62 48 DG 1.85 1.76 1.57 1.92
20 VG 2.96 2.75 2.76 2.77 49 PG 1.77 2.44 1.70 1.82
21 IG∗ 2.92 3.01 2.87 3.05 50 LA∗ 3.51 3.37 3.34 3.22
22 GI 2.92 3.10 2.96 3.26 51 KA∗ 3.42 3.23 3.10 2.55
23 GM 2.85 2.59 2.68 2.58 52 RA 3.34 2.77 3.01 2.68
24 GA∗ 2.70 2.24 2.38 2.42 53 YA∗ 3.34 3.70 3.91 3.93
25 YG 2.70 3.29 3.14 3.05 54 AA∗ 3.21 2.56 2.79 2.69
26 GL∗ 2.60 3.05 3.12 3.04 55 FR 3.04 3.67 3.45 3.53
27 AG 2.60 2.28 2.32 2.37 56 HL 2.49 2.70 2.85 2.30
28 GH 2.51 2.75 2.74 2.78 57 DA 2.42 2.87 2.75 2.68
29 GR 2.49 2.48 2.77 2.61 58 EA 2.00 2.33 2.36 2.12

a ‘*’ superscript indicates that the peptide was chosen to be a member of the test set.
b Obsd: observed activity, pIC50.
c Cald1: calculated activity of the PLS model.
d Cald2: calculated activity of the GA-PLS model.
e Cald3: predicted activity in case of dividing training/test set.

Figure 2 Steric conformation of captopril separated from the
complex.

demonstrating that the main chain stretches out, while
the side chains are distorted to some extent under the
influences of the nearby target enzyme residues. With
captopril crystal structure separated from the complex

serving as the pharmacophoric conformation template,
the original steric structures of the 58 dipeptides
were constructed by HyperChem 7.5 [64]. To further
eliminate irrationality of the structures, combinational
optimization was subsequently implemented by molec-
ular mechanics and molecular dynamics (MM + force
field). First, each molecule was simulated for 1 ps
at 300 K by molecular dynamics, in steps of 1 fs; it
was then optimized by conjugate gradient until con-
vergence conditions were achieved with RMS gradient
<0.001 kcal mol−1, resulting in the ultimate conforma-
tions.

The pharmacophoric conformations of the 48 bitter-
tasting peptides, however, were taken from their low-
energy conformations because there are still no utiliz-
able crystal structures of the peptide analog–gustatory
receptor complex. For the 48 bitter-tasting dipeptides,
the original structures were auto-generated in the mod-
ule Database of HyperChem 7.5 [64]; and considering

Copyright  2007 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2007; 13: 549–566
DOI: 10.1002/psc



554 TIAN ET AL.

Table 3 Sequences of 48 bitter-tasting dipeptides and their observed and calculated activity (pT)

No. Peptidea Obsdb Cald1c Cald2d Cald3e No. Peptidea Obsdb Cald1c Cald2d Cald3e

1 GV 1.13 1.26 1.28 1.17 25 II∗ 2.26 2.32 2.37 2.41
2 GL 1.68 1.43 1.51 1.43 26 IP 2.40 2.05 2.21 2.30
3 GI∗ 1.70 1.45 1.51 1.52 27 IW 3.05 3.03 3.20 2.87
4 GP∗ 1.35 1.25 1.44 1.76 28 IN 1.49 1.47 1.30 1.33
5 GF 1.80 1.80 1.79 1.60 29 ID 1.37 1.25 1.34 1.34
6 GW 1.89 1.76 1.99 1.79 30 IQ∗ 1.49 1.65 1.37 1.36
7 GY∗ 1.77 1.71 1.49 1.35 31 IE∗ 1.37 1.41 1.42 1.35
8 AV 1.16 1.50 1.46 1.42 32 IK 1.65 2.18 1.56 1.58
9 AL∗ 1.70 1.65 1.66 1.66 33 IS∗ 1.49 1.41 1.41 1.38
10 AF 1.72 2.02 1.92 1.76 34 IT 1.49 1.52 1.58 1.80
11 VG 1.19 1.26 1.26 1.14 35 PA 1.32 1.47 1.48 1.41
12 VA∗ 1.16 1.46 1.40 1.34 36 PL 2.22 2.53 2.41 2.29
13 VV∗ 1.71 1.88 1.83 1.79 37 PI 2.33 2.09 2.14 2.17
14 VL 2.00 2.06 2.08 2.11 38 PY 1.80 2.35 2.16 1.98
15 LG∗ 1.72 1.43 1.50 1.48 39 PF∗ 2.80 2.44 2.46 2.87
16 LA∗ 1.72 1.63 1.65 1.65 40 FG∗ 1.77 1.78 1.77 2.04
17 LL∗ 2.35 2.24 2.36 2.47 41 FL∗ 2.87 2.67 2.79 3.11
18 LF∗ 2.75 2.63 2.69 3.05 42 FP 2.70 2.41 2.59 2.56
19 LW∗ 3.40 2.99 3.20 3.63 43 FF 3.10 3.12 3.28 3.23
20 LY∗ 2.46 2.54 2.39 2.33 44 FY 3.13 3.10 3.13 2.99
21 IG∗ 1.68 1.45 1.48 1.43 45 WE 1.56 2.01 1.67 1.77
22 IA∗ 1.68 1.65 1.64 1.61 46 WW 3.60 3.61 3.52 3.69
23 IV 2.05 2.09 2.09 2.12 47 YL∗ 2.40 2.58 2.48 2.39
24 IL∗ 2.26 2.27 2.34 2.42 48 SL∗ 1.49 1.34 1.58 1.43

a ‘*’ superscript indicates that the peptide was chosen to be a member of the test set.
b Obsd: observed activity, pT.
c Cald1: calculated activity of the PLS model.
d Cald2: calculated activity of the GA-PLS model.
e Cald3: estimated/predicted activity in case of dividing training/test set.

their high molecular flexibilities, they were subse-
quently optimized by utilizing a conformational search,
with the related software BioMedCAChe 6.1 [65]. First,
each rotational bond in the molecule is appended by a
search label by the Geometry Label Wizard, and simul-
taneously a searching realm of −180° to +180° and a
step length of 36° were defined. Then for each molecule,
once the searching process is completed, an aggregation
comprising many low-energy conformations would be
correspondingly generated. Following that, the lowest-
energy conformation is taken out to implement molec-
ular mechanics optimization by HyperChem 7.5 [64],
giving rise to the ultimate conformation (the parame-
ters included in molecular mechanics are the same as
above, and the optimization-derived dipeptide WW of
the highest bitter-tasting activities is presented in its
low-energy conformation in Figure 3).

Calculations of 3D-HoVAIF Descriptors

With the optimal conformations inputted into the
semiexperimental quantum chemistry software MOPAC
6.0 [66], Mülliken partial charges for each atom were
worked out in the single-point form at the PM3 level.

Figure 3 Theoretical low-energy conformation of WW.

Then inputting each atomic Cartesian coordinates
and partial charge into program GET3D, which is
edited in the C-language, we ultimately obtained
the corresponding 3D-HoVAIF descriptors for all the
samples. For the reason that C(sp), N and halogen atoms
are absent in natural dipeptides, there are 81 empty
items in a total of 165 3D-HoVAIF descriptors. Taking
off all these empty items, 84 3D-HoVAIF descriptors
remained for a molecule, of which, variables V1–V28
demote electrostatic items, V29–V56 indicate van der
Waals interactions and V57 – V84 characterize the
hydrophobic interactions.
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RESULTS AND DISCUSSION

QSAR Studies on ACE Inhibitors

On the basis of the chemometrics software Simca-
p 10.0 [67], the PLS model is constructed to relate
3D-HoVAIF descriptors (X) with bioactivities (Y) for
58 ACE inhibitors, yielding two prominent principal
components which together account for 79.2% variance
of the Y variables, with cross-validation achieving
68.7%. The relative statistics are listed as r2 =
0.792, q2 = 0.687, RMSEE = 0.459 and RMSCV =
0.542. Table 4 lists the results from this paper and
other available reference reports, of which the earlier
references R1–R4 contain no variable selection, while
the latter references R6–R13 show the opposite, i.e.
they all implement variable selections by different
methods. As seen from this table, the 3D-HoVAIF
approach is demonstrated to have greatly gained in
comparison with the methods of references R1 – R4,
while fading into significance by comparison with
those in references R6–R13 with respect to q2

(indicating modeling stabilities). However, variable
selection, which aims to seek a few factors directly
relating to the dependent variable (Y), is deemed to
be efficacious in improving the modeling qualities
by filtering out noise and other interferences. Thus,
the genetic algorithm-partial least squares (GA-PLS)
[68] is utilized here, with the related programs
Gaot Toolbox [69] and PLS Toolbox [70] based on
the Matlab 6.1 [71] environment. The parameter
settings included in the GA listed here are: original
population size, 150; maximum genetic algebra, 200;
convergent condition, 80% of individuals achieve
an agreement; mutation probability, 0.5%; cross-
interchange, 2 points; cross-validation, leave-1/5-out;
data pretreatment, autoscaling; others are taken as
defaults. The optimal variable subset is composed of the
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Figure 4 Fitness curve with the evolution of the GA
population.

variables V3, V5, V6, V9, V15, V16, V17, V18, V22, V25,
V29, V32, V34, V37, V43, V45, V49, V50, V53, V55,
V60, V61, V69, V73, V75, V78, V80, and V81. Fitness
curves with the evolution of the GA population are
shown in Figure 4. By such an implementation, the PLS
model has been largely improved, ultimately resulting in
28 variables from the whole 84 3D-HoVAIF descriptors.
On further analysis by the software Simca-p 10.0 [67],
the PLS model yielded three principal components,
with r2, q2, RMSEE, and RMSCV of 0.857, 0.811,
0.376, and 0.432, respectively, and in contrast with
references R6–R13, it has been found to be only slightly
inferior to the MEDV model proposed by Liu et al. [50]
utilizing GA-MLR modeling methods with respect to
q2, while surpassing other reference reports (Table 4).
Figure 5 is the scoring scatter at the top two PLS
principal component spaces in X, and of these, samples
of pIC50 > 4 are marked by circles, 3 ≤ pIC50 ≤ 4 by

Table 4 Comparisons among different QSAR models for ACE inhibitors

No. Descriptor Method PC r2 q2 RMSEE RMSCV

1 z-scale [45] PLS 2 0.770 0.723 — —
2 t-score [46] PLS 1 0.744 — 0.50 —
3 ISA-ECI [47] PLS 2 0.700 — — —
4 MSW-score [48] PLS 2 0.708 0.637 — —
5 3D-HoVAIF PLS 2 0.792 0.687 0.459 0.542
6 VMEE [49] SMR-MLR 2 0.741 0.711 0.504 —
7 MEDV [50] GA-MLR 5 0.883 0.861 0.339 0.370
8 MHDV [51] SMR-PCR 19 0.878 0.753 0.347 0.50
9 MEDV-13 [52] SMR-PCR 19 0.895 0.783 0.32 0.47

10 VHSE [53] SMR-PLS 1 0.770 0.745 0.48 —
11 SSIA [54] SMR-PLS — 0.789 0.773 0.47 —
12 T-scale [55] SMR-PLS 2 0.845 0.786 0.39 —
13 GVSC [56] GA-PLS 1 0.766 0.712 0.48 —
14 3D-HoVAIF GA-PLS 3 0.857 0.811 0.376 0.432
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Figure 5 The GA-PLS scores t1 and t2 for ACE inhibitors.

triangles and pIC50 < 3 by squares. In this figure,
the ACE inhibitors are inclined to be increasingly
distributed from the bottom left to the top right corner
according to the activity values, with samples of similar
bioactivities favorably assembled together, thereby
suggesting that the top two GA-derived principal
components are already sufficient to characterize
activity distributions. Besides, out of all the samples,
only samples #28 and #39 exceed Hotelling’s T2 ellipse
of 95% confidence. By analysis, these two dipeptides
are found to have the same compositions (GH and HG,
respectively), with one of their constituent residues as
H (histidine) which is very rare in other peptides, and
therefore behaving a little differently, to be separated
at the bottom right corner of this scoring scatter
plot. Figure 6 delineates the variable importance in
projection (VIP) [37] for the 28 3D-HoVAIF descriptors,
the different colors corresponding to the electrostatic
interactions, the van der Waals interactions and the
hydrophobicities separately, indicating approximately
the same contribution to the model but relatively

Figure 6 Variable importance in projection (VIP) in the
GA-PLS model.

more contribution by electrostatic interaction, than
van der Waals and hydrophobicities in turn. To
further investigate the reliability of this GA-PLS model,
Y random permutations test [72], accompanied by
modeling over-fitness validation, was carried out. Here,
the Y variables are subject to 100 times random
permutations, and then plots of r2 and q2 of the
permutated model against correlation coefficients of
original and permutated Y variables were separately
given out. Results of the Y random permutations
test are demonstrated in Figure 7, in which the
slopes of r2 and q2 regression lines are 0.156 and
−0.385, respectively. The high values of r2 and q2

are not deemed to occur by accident. Figures 8
and 9 are plots of GA-PLS-calculated and cross-
validation-predicted versus observed activities for 58
ACE inhibitors, respectively, wherein most samples
are uniformly dispersed along a line passing through
the origin and forming an angle of 45°, except for

Figure 7 Y random permutations test in the GA-PLS model.
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Figure 8 Plot of GA-PLS-calculated vs observed activities for
58 ACE inhibitors. This figure is available in colour online at
www.interscience.wiley.com/journal/jpepsci.

peptide #38 which has large positive residue errors. By
structural analysis, dipeptide #38 comprises residue
W (tryptophan), which possesses a conjugated dicyclic
side chain of large volume. In Table 2, compounds of
high activities (pIC50 > 4) are often found to contain
residue W or structurally similar residues, such as
Y (tyrosine) and F (phenylalanine), being opposite to
the case of sample #38, which has a relative low
observed activity (pIC50 = 2.23). This predicted large
positive error is ascribed to one of the following: (i) the
experimental value is a bit low; (ii) sample #38 is special
by itself; or (iii) the model selected is irrational. In many
cases, outliers are concealed from the model, risking
the loss of some valuable information. So, sample #38
is carefully reserved here.

QSAR Studies On Bitter-Tasting Dipeptides

First, we directly employed 84 3D-HoVAIF descriptors
to construct the QSAR model for activities (pT)
of 48 dipeptides, yielding a PLS model with three
prominent principal components, of which r2, q2,
RMSEE and RMSCV were 0.876, 0.798, 0.219, and
0.280, respectively. Such results have already been
satisfactory in spite of no variable selection, but to
further improve the modeling quality, GA is utilized
to select variables (with the GA parameter settings
as above). The optimal variable subset is composed
of 25 3D-HoVAIF descriptors, of which 8 electrostatic
interactions are indicated by variables V1, V2, V9, V10,
V14, V19, V22, and V27; 7 van der Waals interactions
are as variables V32, V37, V45, V48, V52, V54, and
V55, and 10 hydrophobic interactions as variables V57,
V 58, V60, V64, V74, V76, V78, V80, V83, and V84.
Statistics of this GA-PLS model are r2 = 0.940, q2 =
0.892, RMSEE = 0.153 and RMSCV = 0.205, indicating
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Figure 9 Plot of GA-PLS cross-validation-predicted vs
observed activities for 58 ACE inhibitors. This figure is avail-
able in colour online at www.interscience.wiley.com/journal
/jpepsci.
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Figure 10 Plot of PLS cross-validation-predicted vs observed
activities for 48 bitter-tasting dipeptides. This figure is avail-
able in colour online at www.interscience.wiley.com/journal
/jpepsci.

both largely advanced fitting abilities (r2) and stabilities
(q2) (Figures 10 and 11 are plots of PLS and GA-
PLS cross-validation-predicted vs observed activities
for 48 bitter-tasting dipeptides respectively). Table 5
gives the available reference reports on this dataset;
by comparison, it is found that irrespective of whether
implementing variable selection or not, the 3D-HoVAIF
model is superior, especially with its predictabilities q2

remarkably improved. To validate normal hypothesis,
we then implement the normal probability of the
standardized residual [37] for the regression model;
in Figure 12 most of the residue errors follow a normal
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Table 5 Comparison among different QSAR models for bitter-tasting dipeptides

No. Descriptor Method PC r2 q2 RMSEE RMSCV

1 z-Scale [45] PLS 2 0.824 — 0.26 —
2 Extended z-scale [60] PLS 1 0.780 — — —
3 ISA-ECI [47] PLS 2 0.847 — 0.24 —
4 MSW-score [48] PLS 3 0.754 0.710 — —
5 MARCH-INSIDE [61] PLS 3 0.858 — 0.226 —
6 3D-HoVAIF PLS 3 0.876 0.798 0.219 0.280
7a VMEE [49] SMR-MLR 3 0.735 0.677 0.323 —
8 MHDV [51] SMR-PCA 10 0.919 0.857 0.178 0.232
9 VHSE [53] SMR-PLS 3 0.910 0.816 0.20 —
10 3D-HoVAIF GA-PLS 3 0.940 0.892 0.153 0.205

a There is an outlier for this model.
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Figure 11 Plot of GA-PLS cross-validation-predicted vs
observed activities for 48 bitter-tasting dipeptides. This figure
is available in colour online at www.interscience.wiley.com
/journal/jpepsci.

distribution, with the only exceptions of samples #38
and 39, for which the standardized residues (SD)
are beyond the range of ±2 (Wold et al. [37] has
pointed out that it would be permissible for SD to be
within the range of ±3). So the normal hypotheses are
confirmed to be true. Figure 13 delineates the scoring
scatter of the top two principal components in the X-
space, wherein the sample points are demonstrated
to present an increasing distribution, with activities
increasing in the first principal component space
(different activity ranks are marked by different symbols
in Figure 13), and dipeptides of similar activities are
obviously assembled together. At the second principal
component space, however, the distribution of sample
points is less regular. Besides, in Figure 13 there is
an extreme outlier caused by sample #46 of which the
scoring point remarkably deviates from the other 47

Figure 12 The normal probability plot of the Y -standardized
residuals for the bitter-tasting dipeptides. This figure is avail-
able in colour online at www.interscience.wiley.com/journal
/jpepsci.

samples. By analysis, sample #46 comprises two large
W (tryptophan) residues in addition to possessing the
largest observed activity (pT = 3.60), so its abnormality
in the scoring distribution is ascribed to specificities
in molecular structure and observed activity. Such
a phenomenon also occurred for sample #45, for
which also the scoring point slightly deviates from
other ones because its N-terminus is occupied by
the residue W (only samples #45 and #46 contain
a residue W at the N-terminus). Therefore, it is
concluded 3D-HoVAIF descriptors are efficacious in
mapping molecular structural characteristic onto an
independent variable space, and to favorably reproduce
molecular fine structures in the statistical model.
Figure 14 is the plot of u1 against t1 in the GA-
PLS model (t1 and u1 indicate the first principal
component in the X and Y scoring space, respectively).
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Figure 13 The GA-PLS scores t1 and t2 for the bitter-tasting
dipeptides. This figure is available in colour online at
www.interscience.wiley.com/journal/jpepsci.

In Figure 14, a strong linear relation is displayed
between t1 and u1, and except for #45 and #46,
most samples are dispersed nearly along this line,
which is consistent with conclusions of Figure 13.
Figure 15 shows the loading contribution of the GA-
PLS model, wherein hydrophobic and van der Waals
interactions positively contribute to Y at the first
principal component, while electrostatic interaction
has negative contributions. Out of this, large loading
contributions (|loading| > 0.3) to the first principal
component are provided by electrostatic interactions
of H–H, C(sp3)–C(sp2) and C(sp2)–C(sp2), van der
Waals interactions of C(sp3)–C(sp2) and hydrophobic
interactions of C(sp3)–N(sp3). Generally, prominent
variables to the model are mostly C–H interactions,
just in agreement with the true case because dipeptide
skeletons are mainly made up of these two atomic types.

Model Validation

It has been recently recognized that only leave-one-out
cross-validation correlation coefficient q2 underdeter-
mines reliabilities of a QSAR model, and therefore a
rigorous validation by an external test set is required.
For three important statistical parameters referring to
non-cross-validation, correlation coefficient r2, cross-
validation correlation coefficient q2 and external corre-
lation coefficient q2

ext on the test set, the former serves
as the necessary and sufficient condition for the latter
in turns, i.e. a QSAR model of excellent predictabilities
(q2

ext ) must have high stabilities (q2) which is ensured by
strong fitting abilities (r2). In the above discussions, it
has already been confirmed that the 3D-HoVAIF model
possesses favorable fitting abilities and stabilities on
58 ACE inhibitors and 48 bitter-tasting dipeptides, and
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Figure 14 Plot of the GA-PLS scores u1 against t1 for the
bitter-tasting dipeptides. This figure is available in colour
online at www.interscience.wiley.com/journal/jpepsci.
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Figure 15 Loading plot of the GA-PLS model for the
bitter-tasting dipeptides. This figure is available in colour
online at www.interscience.wiley.com/journal/jpepsci.

following that, a further validation would be imple-
mented by an external sample set. Meanwhile, a parallel
has been drawn between 3D-HoVAIF and two classical
amino acid descriptors including z-scale and ISA-ECI.
Among these, the z-scale indicates an amino acid scor-
ing vector that is extracted from 29 physicochemical
properties of natural amino acids by principal com-
ponent analysis by Hellberg et al. [73], and has wide
applications in peptide activity predictions [74–77],
protein design [78], analysis of peptide–protein bind-
ing affinities [79] and protein stability discriminations
[80]. ISA-ECI (referring to isotropic surface area and
electronic charge index) consists of two fundamental
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parameters proposed by Collantes et al. [47] to indicate
information on steric characteristics and local dipole
properties of amino acid side chains, also contribut-
ing much to the fields of combinational peptide library
design [81], HLA-A∗0201-restricted CTL epitope recog-
nition [82], charge distribution simulation for peptide
skeletons [83,] etc. The z-scale and ISA-ECI values are
listed in Table 6.

First, we employ D-optimal [84,85] to divide the
datasets for the 58 ACE inhibitors and 48 bitter-
tasting dipeptides separately, resulting in 29 and 24
training/test samples. As an optimal algorithm for
the determinant, D-optimal ensures maximization of
information matrix (XTX) determinant value of train-
ing set. Here, for the reason that QSAR studies on
sample sets are performed by three different char-
acteristic methods, z-scale, ISA-ECI and 3D-HoVAIF,
orthogonal coding is taken to achieve equalization when
implementing D-optimal calculations on each dipep-
tide (i.e. each dipeptide location is characterized by
20 binary variables, and each variable indicates a
type of amino acid residue with occurrence or not,
corresponding to 1 or 0, respectively). Test samples
resulting by D-optimal algorithm are marked by the
symbol ‘∗’ in Tables 2 and 3. D-optimal algorithm is
implemented by Matlab 6.1 [71]. Based upon that and
by using the training set, GA-PLS models are created
for the z-scale, ISA-ECI and 3D-HoVAIF, with sep-
arate statistics referred to in Tables 7 and 8. It is
revealed that that the 3D-HoVAIF model is remark-
ably superior to the z-scale and ISA-ECI models with
respect to both fitting abilities for the training set

Table 6 z-Scale and ISA-ECI descriptors for 20 natural
amino acids (AAs)

AAs z-Scale ISA-ECI

z1 z2 z3 ISA ECI

Ala, A 0.07 −1.73 0.09 62.90 0.05
Arg, R 2.88 2.52 −3.44 52.98 1.69
Asn, N 3.22 1.45 0.84 17.87 1.31
Asp, D 3.64 1.13 2.36 18.46 1.25
Cys, C 0.71 −0.97 4.13 78.51 0.15
Gln, Q 2.18 0.53 −1.14 19.53 1.36
Glu, E 3.08 0.39 −0.07 30.19 1.31
Gly, G 2.23 −5.36 0.30 19.93 0.02
His, H 2.41 1.74 1.11 87.38 0.56
Ile, I −4.44 −1.68 −1.03 149.77 0.09
Leu, L −4.19 −1.03 −0.98 154.35 0.10
Lys, K 2.84 1.41 −3.14 102.78 0.53
Met, M −2.49 −0.27 −0.41 132.22 0.34
Phe, F −4.92 1.30 0.45 189.42 0.14
Pro, P −1.22 0.88 2.23 122.35 0.16
Ser, S 1.96 −1.63 0.57 19.75 0.56
Thr, T 0.92 −2.09 −1.40 59.44 0.65
Trp, W −4.75 3.65 0.85 179.16 1.08
Tyr, Y −1.39 2.32 0.01 132.16 0.72
Val, V −2.69 −2.53 −1.29 120.91 0.07

and predictabilities for the test set, with external val-

idation statistics as
r2
ext − r2

0,ext

r2
ext

= 0.004,
r2
ext − r

′2
0,ext

r2
ext

=
0.006, k = 0.962 and k ′ = 1.019 for ACE inhibitors,

and
r2
ext − r2

0,ext

r2
ext

= 0.000,
r2
ext − r

′2
0,ext

r2
ext

= 0.000, k = 1.018

Table 7 Comparisons among different QSAR models separately constructed by z-scale, ISA-ECI and 3D-HoVAIF descriptors on
ACE inhibitors

No. Descriptor Method PC Training set Test set

r2 q2 RMSEE RMSCV q2
ext r2

ext r2
0,ext r

′2
0,ext k k ′ RMSEP

1 z-Scale GA-PLS 2 0.864 0.794 0.394 0.487 0.671 0.759 0.755 0.753 0.957 1.019 0.516
2 ISA-ECI GA-PLS 1 0.721 0.633 0.566 0.649 0.572 0.652 0.650 0.650 0.941 1.028 0.589
3 3D-HoVAIF GA-PLS 2 0.893 0.824 0.349 0.425 0.739 0.784 0.781 0.779 0.962 1.019 0.460

Table 8 Comparisons among different QSAR models separately constructed by z-scale, ISA-ECI and 3D-HoVAIF descriptors on
bitter-tasting dipeptides

No. Descriptor Method PC Training set Test set

r2 q2 RMSEE RMSCV q2
ext r2

ext r2
0,ext r

′2
0,ext k k ′ RMSEP

1 z-scale GA-PLS 3 0.897 0.837 0.217 0.274 0.721 0.793 0.790 0.790 1.011 0.969 0.297
2 ISA-ECI GA-PLS 2 0.884 0.842 0.231 0.269 0.802 0.844 0.843 0.843 1.021 0.975 0.250
3 3D-HoVAIF GA-PLS 3 0.950 0.893 0.152 0.222 0.875 0.919 0.919 0.919 1.018 0.974 0.198
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Figure 16 Plot of predicted vs observed activities for 29 ACE inhibitors in test set: (a) z-scale; (b) ISA-ECI; (c) 3D-HoVAIF. This
figure is available in colour online at www.interscience.wiley.com/journal/jpepsci.

and k ′ = 0.974 for bitter-tasting dipeptides, satisfy-
ing Eqns (13) and (14). In contrast to ACE inhibitors,
bitter-tasting dipeptides obtain better modeling qual-
ities. This can be ascribed to the fact that ACE-
inhibiting activities are predominently related to the
two-dimensional topological structures of the dipep-
tides, with large inhibiting activities corresponding to
the large two-dimensional topological structures, while
for bitter-tasting dipeptides, such a rule is impermissi-
ble and activities are first related to the information on
three-dimensional potential fields, and second to two-
dimensional topological structures. Figures 16 and 17
are plots of predicted versus observed activities for 29
ACE inhibitors and 24 bitter-tasting dipeptides in the
test set: (a) z-scale; (b) ISA-ECI; (c) 3D-HoVAIF, respec-
tively, wherein 3D-HoVAIF-predicted sample points are
uniformly dispersed along a regression line passing
through the origin, while with inferior uniformities by
z-scale and ISA-ECI. In Figure 16(b), the ISA-ECI model
overestimates the ACE-inhibiting activity of sample
#19, thereby largely undermining predictabilities. In
Figure 17(a), the z-scale model, however, yields large
calculated errors over all the 24 bitter-tasting dipep-
tides in the test set, so this model is also deemed to be
poor in predictabilities.

Generally, z-scale and ISA-ECI, serving as two-
dimensional structural descriptors based on peptide
primary-order sequence characteristics, are both
unable to provide insight into three-dimensional poten-
tial field information on peptide–receptor interactions.
Besides, z-scale and ISA-ECI, characterizing intricate
peptide analogs by only taking a few principal properties
or side-chain parameters, suffer considerably in com-
parison with multidimensional 3D-HoVAIF vectors with
respect to resolution capabilities on intricate pharma-
ceutical properties, so the resulting models are inferior
to the 3D-HoVAIF model to different extents for ACE
inhibitors and bitter-tasting dipeptides. But it should
be remarked that 3D-HoVAIF would also be infeasi-
ble in practical applications in cases of more difficult
structural optimizations caused by high structural flex-
ibilities with the peptide chains becoming longer.

Correlation Analysis between Dipeptide Bitter-tasting
Intensities and ACE-inhibiting Activities

Numerous proteins and polypeptide analogs are
absorbed by the human body via foods, and conse-
quently they are hydrolyzed by proteases in vivo into
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Figure 17 Plot of predicted vs observed activities for 24 bitter-tasting dipeptides in test set: (a) z-scale; (b) ISA-ECI;
(c) 3D-HoVAIF. This figure is available in colour online at www.interscience.wiley.com/journal/jpepsci.
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Figure 18 Relation between bitter taste and inhibiting activity for dipeptides in Tables 2 and 3: (a) GA-PLS-model-predicted
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more fundamental amino acids and oligopeptide seg-
ments to be reutilized by organisms as metabolic energy
resource and cell construction motifs. Often, oligopep-
tide compounds transformed by or contained in foods
are of certain physiological activities, impacting on
human cardiovascular, nervous, immune and nutri-
tional systems [86], and therefore methods to introduce
some active peptide analogs into foods are expected

to assist in disease prevention and adjunctive therapy.
For the reason that antihypertensive ACE inhibitors are
often of bitter tastes, seeking oligopeptide sequences
high in inhibiting activities but low in the bitter taste
becomes an important task for the development of
functional foods of comfortable tastes [87]. To this
end, 3D-HoVAIF makes an attempt to perform correla-
tion analysis on the bioactivities of two dipeptides (i.e.
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ACE-inhibiting and bitter-tasting activities), aiming at
providing valuable information for related applications
and researches.

Among 58 ACE inhibitors and 48 bitter-tasting dipep-
tides with known bioactivities, 15 samples are grouped,
with r2 = 0.573 (indicating correlation of inhibiting
activities with bitter tastes). Figure 18(a) is the plot
of the GA-PLS-model-predicted bitter tastes versus the
observed ACE-inhibiting activities (r2 = 0.632) for the
58 samples in Table 2, suggesting inhibiting activities
are positively related with bitter tastes. Figure 18(b)
presents the plot of GA-PLS-model-predicted ACE-
inhibiting activities versus the observed bitter tastes
for the 48 samples in Table 3, suggesting that samples
of high inhibiting activities, with all the C-termini occu-
pied by a bulky tryptophan residue, are simultaneously
of strong bitter tastes. It is revealed that among these
samples, there is no perfect dipeptide compound of both
high inhibiting activity and low bitter taste. Besides, it
is also displayed that the GA-PLS-model-predicted cor-
relations (referring to r2 = 0.567 and 0.632) are near
the observed one (r2 = 0.535). Figure 19 is the plot of
the GA-PLS-model-predicted ACE-inhibiting activities
versus bitter tastes for all 400 theoretically possible
dipeptides, in which three-dimensional steric struc-
tures are transformed from two-dimensional structures
by CORINA 3.2 and optimized by MM+ force field.
In this figure, two areas A and B are marked out to
serve as distribution regions of postselecting samples,
wherein area A indicating ‘tenderness’ has all the con-
stituent dipeptides terminated by a histidine (H) residue
at C-termini, possessing relative weak antihypertensive
abilities but comfortable tastes. Contrary to A, area
B behaving as ‘stimulation’, has all its constituent
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Figure 19 The plot of bitter tastes to GA-PLS-model-predic-
ted ACE-inhibiting activities for 400 theoretically possible
dipeptides. This figure is available in colour online at
www.interscience.wiley.com/journal/jpepsci.

dipeptides terminated by a tryptophan (W) residue at
C-termini, having good pharmaceutical performance
but bad tastes. Besides, a comparison between these
two areas suggests large similarities: they are both
composed of seven dipeptides and behave similarly
with respect to N-termini, wherein seven polar/neutral
residue types S, Q, G (neutrality), N, D, R and E
occur, but differently at the C-termini wherein dis-
tinctly terminated residues occur. Such a case is not
an accident. Via analysis of available molecular struc-
tures of ACE inhibitors in marks, the appearance of
aromatic series and hydrophobic amino acids at the
C-termini is confirmed to actually benefit pharmaco-
dynamic enhancements for peptide analog drugs [88].
However, in Figure 15, which presents the GA-PLS load-
ing plot for bitter-tasting dipeptides, it is indicated that
the entire peptide hydrophobicities are inclined to pos-
itively relate with bitter-tasting intensities. Obviously,
only polar residues at the N-termini are insufficient to
sustain weak hydrophobicity of the whole dipeptides,
and thus hydrophobicity of the C-termini is confronted
with a conflict between high ACE-inhibiting activities
and low bitter tastes. For that, we have to take a neu-
tral attitude. For samples in area A, the C-termini are
occupied by histidine (H) residues, of which the side
chain comprises not only π-conjugation electron sys-
tems similar to aromatic series but also the polar atom
N, thereby resulting in comfortable tastes but low phar-
macodynamic activities. For area B, however, slightly
polar tryptophan (W) residue is chosen at the C-termini,
which intensifies bitter tastes, although remarkably
enhancing pharmacodynamic actions. So, it is actually
difficult to find a perfect dipeptide compound which is
expected to serve as an active component of functional
foods, confirmed by the conclusion that ACE-inhibiting
activities of antihypertension peptide analogs are pos-
itively related with bitter-tasting intensities. But what
can be speculated is that with peptide sequence becom-
ing longer and structural diversities increasing, the
possibilities to find such ‘perfect’ peptide analogs would
be improved.

CONCLUSIONS

By defining 10 common atomic types and their 55
interactions, a novel rotation–translation invariant 3D
structure descriptor, 3D-HoVAIF, is derived from calcu-
lations of three nonbonding interactions of electrostatic,
van der Waals and hydrophobic interactions, which
directly impact on drug activities. Such an approach
has merits in easy calculation and explicit physical
meanings, and is free of experimental parameters,
and moreover overcomes the disadvantages inherent
in most 3D-QSAR approaches, such as conformation
alignment and arbitrary grid division, etc. Besides, typ-
ing atoms in terms of families in the periodic table
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and hybridization states in 3D-HoVAIF methods bene-
fits not only amenable physicochemical meanings, but
also further extensions into intricate molecular sys-
tems rich in hetero atoms, and so this method is
promising in future researches. In the present work,
the 3D-HoVAIF approach has been utilized to perform
systematic QSAR studies on 58 ACE inhibitors and
48 bitter-tasting dipeptides, and by virtue of rigorous
internal–external validations, the resulting models are
confirmed to be stable and predictable. Moreover, these
models are subsequently employed to seek a correlation
between inhibiting activities and bitter tastes in more
detail for dipeptides. Besides, some available reference
reports on these datasets have been collected, aiming
to benefit a comparison with the 3D-HoVAIF approach
in this paper.

Supplementary Material

Supplementary electronic material for this paper is avail-

able in Wiley InterScience at: http://www.interscience.wiley.

com/jpages/1075-2617/suppmat/

Parameters involved in 3D-HoVAIF and 3D-HoVAIF descrip-

tors for 58 ACE inhibitors and 48 bitter-tasting dipeptides are

provided as supporting materials.
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